-
氪氣、氙氣等稀有氣體捕獲和分離新辦法
日前,布魯克海文國家實驗室(BNL)研究人員發現了如何使用二維籠子捕獲稀有氣體的方法。這些籠子可以在高于冰點的溫度下捕獲氬、氪和氙的原子。惰性氣體是周期表中反應性最少的元素,它們是在非常低的溫度下從空氣中冷凝出來。因此,它們在高于沸點的溫度下極難捕獲。 科學家、工業界、能源公司和其他公司都需要在高于沸點的溫度下捕獲惰性氣體。然而,捕獲這些元素的原子是極其困難的,因為大多數納米材料產生的捕獲力很弱,這些材料只有十億分之一米厚。國家同步輻射光源II(NSLS-II)和功能納米材料中心研究人員現更多 +
-
煤制烯烴新技術成功完成工業試驗,一氧化碳單程轉化率超越50%
從我國科學院在大連化學物理研究所舉行的煤經合成氣直接制低碳烯烴技能工業中試實驗效果發布會上得悉,大連化物所與陜西延伸石油(集團)有限責任公司合作,于近日在陜西榆林進行的煤經合成氣直接制低碳烯烴技能工業中試取得圓滿成功,催化劑功能和反響過程的多項重要參數超越規劃目標,總體功能優于實驗室水平。 此次實驗開車一次成功,完成一氧化碳單程轉化率超越50%,低碳烯烴(乙烯、丙烯和丁烯)選擇性優于75%,是世界上首套根據該項創新效果的工業中試設備,進一步驗證了該技能道路的先進性和可行性,加快了該技能的產業化進程更多 +
-
氧氣同位素在海洋研究中的應用
氧的同位素已知的有十二種,包括氧13至氧24,其中氧16、氧17和氧18三種歸于穩定型,其他已知的同位素都帶有放射性,其半衰期全部均少于三分鐘。 用處在于:生物呼吸、冶金和化工。但是同樣氧氣的同位素在海洋科學研討中也起到不少作用,科學家能夠通過氧同位素數值核算海水環境溫度。 1953年Epstein等人依據試驗結果,首次發表方解石的碳酸鈣溫度轉化方程式,經過多位科學家研討并批改,于1991年Hays and Grossman綜合前人研討,并重新整理方解石同位素溫度方程式。碳更多 +
-
印度“月球2號”疑似氦氣泄露!
16日,《印度時報(Times of India)》宣告音訊稱,一位資深科學家對《印度時報》曝料:“在填充氦氣后,我們發現壓力在下降,這表明有泄漏,團隊還沒有找到泄漏的確切位置,可能有多個泄漏。” 現在,擔任發射任務的印度太空研討組織通過海外交際平臺發布音訊稱,印度太空研討組織會盡快宣告新的發射日期,但現在沒有得到詳細發射時間的相關音訊。 根據印度太空研討組織此前的方案,“月球2號”將于印度當地時間7月15日更多 +
-
氦氣這么貴不是沒有原因的!
“氣體”一詞聽起來好像離我們生活很遠,事實上,大部分氣體常在各行業用做生產的原材料,工業生產、科學研究以及航空航天和醫療等方面。然而,氦氣不一樣,它不僅可以應用于航空航天、科學研究和醫療等行業,氦氣還常常出現在我們的日常生活中。 氦氣球就是我們最常見的氦氣日常應用,這個五一紐瑞德特氣就參與了武漢歡樂谷熊貓主題的活動~跟著紐小編一起逛一逛武漢歡樂谷吧! 紐瑞德的安裝師傅們在充裝熊貓氣球~ 可愛的大熊貓上天啦 &nb更多 +
-
液態金屬氘加熱可過渡到高密度等離子態
等離子體是由自在運動電子和離子(失去電子的原子)組成的熱湯,它們很簡單導電。盡管等離子體在地球上并不常見(日子中運用的明火也是等離子態,雖然不是徹底是),但它們構成了可觀測宇宙的大部分物質,比如太陽表面。科學家們可以在地球上發作人造等離子體,通常是經過將氣體加熱到數千華氏度,從而剝離原子的電子。在更小的范圍內,這與等離子電視和霓虹燈“發光”進程是相同的:電激起霓虹燈氣體的原子,使霓虹燈進入等離子狀況并發射光子。還有另一種制作等離子體的辦法:在高密度的條件下,將液態金屬氘加熱到很高的溫度也會發更多 +
-
室溫下將氣態二氧化碳可轉化為固體碳材料
溫室效應已經是困擾人類多年的問題,所有的溫室氣體中最主要的氣體就是二氧化碳,而人類的任何活動都有可能造成碳排放,因此“負碳排放”技術對于維持未來氣候的穩定至關重要。雖然目前很多研究都專注于將二氧化碳還原成高附加值產品,如化學原料和燃料,但這些方法無法實現永久性碳捕捉(因為合成的燃料只會被用來燃燒)。 澳大利亞新南威爾士大學的科學家研發了一種液態金屬電催化劑,可在室溫下將氣態二氧化碳(CO2)轉化為固體碳材料,并用于能量儲存。該方法將為去除大氣中的二氧更多 +
-
六氟化硫解開突降暴雨之謎
由于真正的云層過于復雜,很難在實驗室進行控制模擬,突降暴雨的成因一直讓大氣科學家感到困惑。最近,德國的馬普動力學與自組織研究所制作的大氣模擬艙由兩層結構組成,艙內注入六氟化硫(SF6) 與氦氣(He)組成的混合氣體。 六氟化硫代表大氣水——液態或氣態(取決于溫度);氦氣代表大氣中的其他氣體,如氮氣。他們對模擬艙的下層加熱,上層冷卻,結果發現混合氣體在下部自然形成液態的六氟化硫,而氦與六氟化硫的蒸汽位于其上部。一些六氟化硫在上層的寒冷表面凝結,并偶爾形成液滴,落入下部。六氟化更多 +
-
氖同位素或許是地球形成的關鍵!
據國外媒體報道,海底巖石中的氖同位素或許是理解地球在45億年前如何形成的關鍵。科學家認為,根據太陽星云中早期地球形成的速度快慢,行星表面不同的氣體濃度也會有所不同。而深海是我們能夠到達的最接近地幔的地方。 在一項新研究中,科學家分析了深海海底玄武巖內部的氖氣,認為早期地球誕生于太陽周圍的塵埃和氣體云,并將水和氣體困在這些巖石中。 關于地球在原行星盤中如何形成有三個主要觀點,并且提出了不同的時間線和過程。 第一種觀點認為形成過程發生得很快,從太陽星云中捕獲氣體的時更多 +
-
2019年電子氣體、標準氣體、高純氣體的發展現狀
隨著近年來國防工業、科學研究、自動化技術、精密檢測,特別是微電子技術的發展,特種氣體行業新興起來。特種氣體是工業氣體中的一個新興門類,從應用領域劃分,主要有電子氣體、高純氣體、標準氣體三大類。 近年來,隨著下游應用領域的逐步擴展,特種氣體的品種也與日俱增,據不完全統計,我國已有的特種氣體達260余種。 隨著非低溫氣體分離技術(吸附、膜分離)、混配技術和提純技術的發展,更多的特種氣體產品將逐步走向市場。 電子氣體主要分為氫化物(超純氫、硅烷、磷烷等更多 +