要得到液態氦,必須先把氦氣壓縮并且冷卻到液態氫的溫度,然后讓它膨脹,使溫度進一步下降,氦氣才能變成液體。更多信息請點擊 ,或者撥打我們的熱線電話:400-6277-838
液態氦是透明的容易流動的液體,就像打開了瓶塞的汽水一樣,不斷飛濺著小氣泡。 液態氦是一種與眾不同的液體,它在零下269℃就沸騰了。在這樣低的溫度下,氫也變成了固體,千萬不要使液態氦和空氣接觸,因為空氣會立刻在液態氦的表面上凍結成一層堅硬的蓋子。 超流動性普通液體的粘滯度隨溫度的下降而增高,與此不同,HeⅠ的粘滯度在溫度下降到2.6K左右時,幾乎與溫度無關,其數值約為 3×10-6帕秒,比普通液體的粘滯度小得多。在2.6K以下,HeⅠ的粘滯度隨溫度的降低而迅速下降。HeⅡ的粘滯度在λ點以下的溫度時立刻降至非常小 的值(<10-12帕秒),這種幾乎沒有粘滯性的特性稱為超流動性。用粗細不同的毛細管做實驗時,發現流管愈細,超流動性就愈明顯,在直徑小于10-5厘 米的流管中,流速與壓強差和流管長度幾乎無關,而僅取決于溫度,流動時不損耗動能。 氦膜任何與HeⅡ接觸的器壁上覆蓋一層液膜,液膜中只包含無粘滯性的超流體成分,稱為氦膜。氦膜的存在使液氦能沿器壁向盡可能低的位置移 動。將空的燒杯部分地浸于HeⅡ中時,燒杯外的液氦將沿燒杯外壁爬上杯口,并進入杯內,直至杯內和杯外液面持平。反之,將盛有液氦的燒杯提出液氦面時,杯 內液氦將沿器壁不斷轉移到杯外并滴下。液氦的這種轉移的速率與液面高度差、路程長短和障壁高度無關。
對HeⅡ性質的理論研究首先由F. 倫敦作出。4He原子是自旋為整數的玻色子,倫敦把HeⅡ看成是由玻色子組成的玻色氣體,遵守玻色統計規律,玻色統計允許不同粒子處于同一量子態中。倫敦 證明了存在一個臨界溫度Tc,當溫度低于Tc時,一些粒子會同時處于零點振動能狀態(即基態),稱為凝聚,溫度愈低,凝聚到零點振動能狀態的粒子數就愈 多,在絕對零度時,全部粒子都凝聚到零點振動能狀態,以上現象稱為玻色-愛因斯坦凝聚。L.蒂薩認為HeⅡ的超流動性起因于玻色-愛因斯坦凝聚。由于已凝 聚到基態的HeⅡ原子具有最低的零點振動能,故有極大的平均自由程,能夠幾乎無阻礙地通過極細的毛細管。蒂薩首先提出二流體型,后來L.D.朗道修正和補 充了此模型。二流體模型認為HeⅡ由兩部分獨立的、可互相滲透的流體組成,一種是處于基態的凝聚部分,熵等于零,無粘滯性,是超流體;另一種是處于激發態 (未凝聚)的正常流體,熵不等于零,有粘滯性。兩種流體的密度之和等于HeⅡ的總密度,溫度降至λ點時,正常流體開始部分地轉變為超流體,溫度愈低,超流 體的密度愈大,而正常流體的密度則愈小,在絕對零度時,所有原子都處于凝聚狀態,全部流體均為超流體。利用這個二流體模型可解釋關于液氦的許多力學和熱學性質。